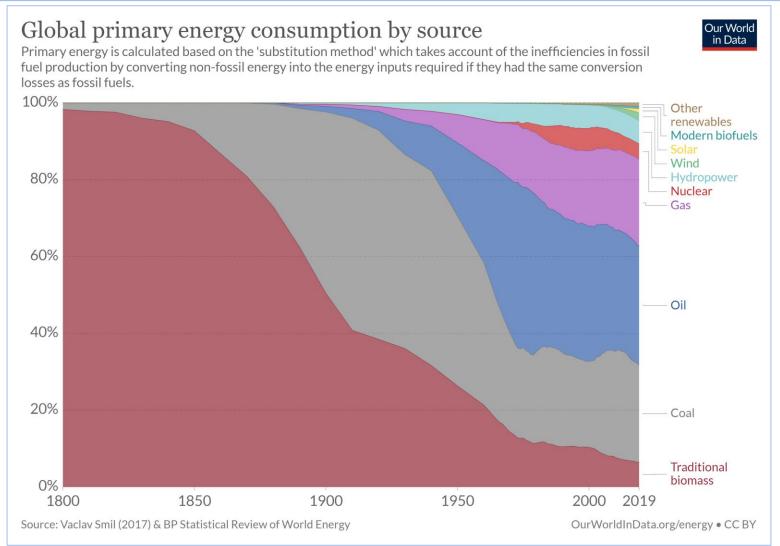
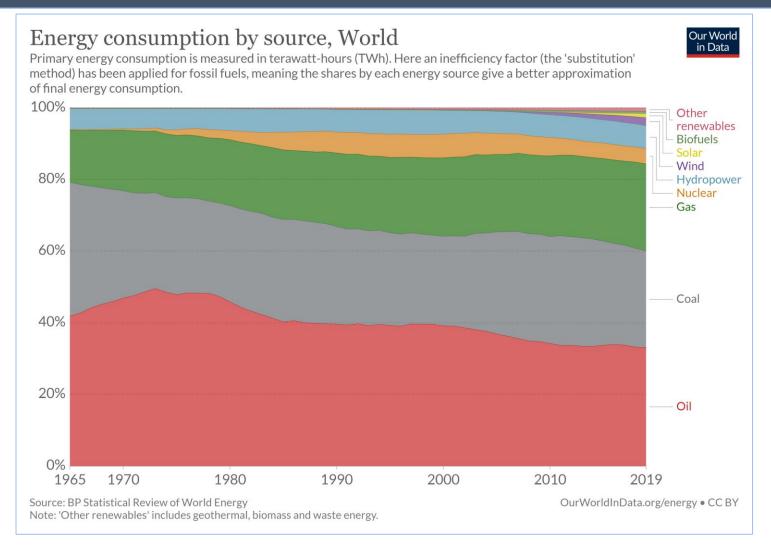


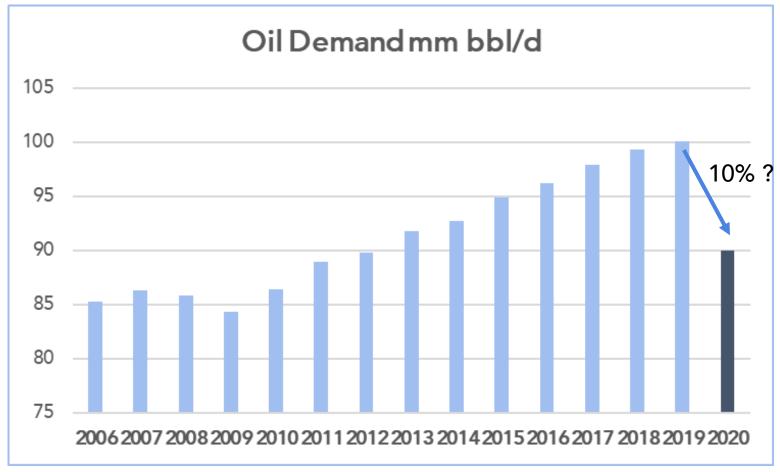
An overview of energy sector trends in Croatia and beyond Zagreb, 30 October, 2020



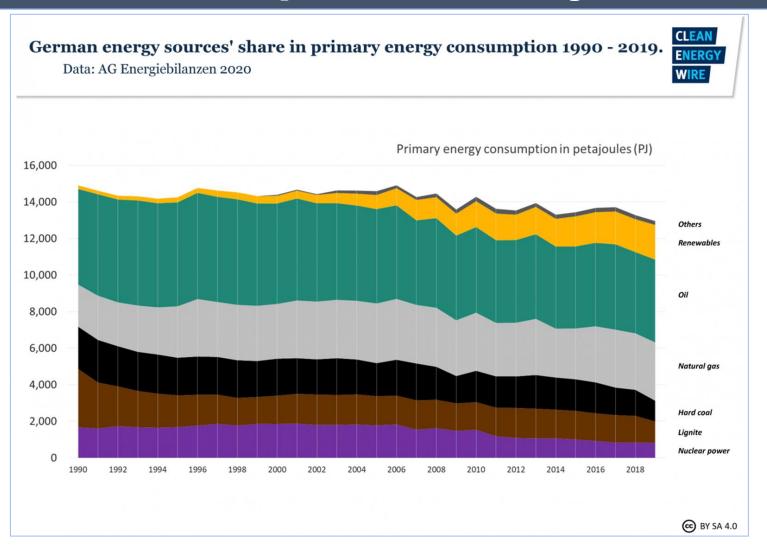
A QUICK LOOK AT SOME GLOBAL ENERGY SECTOR TRENDS



Fossil fuels dominate the global energy mix

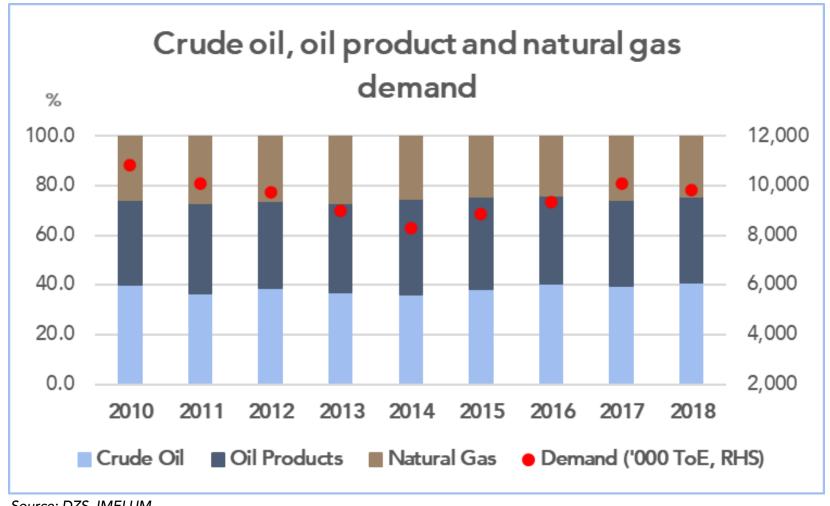


And have continued to do so in the past 50 years

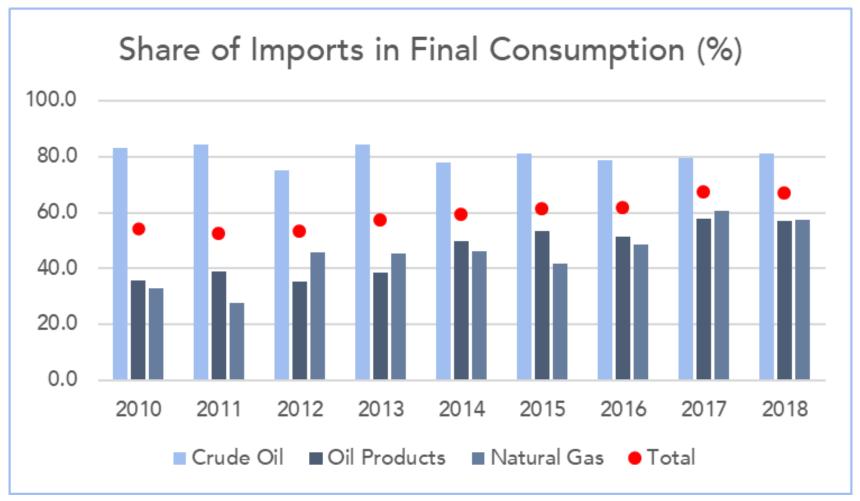

Global Oil demand

Source: Statista, IEA, IMELUM

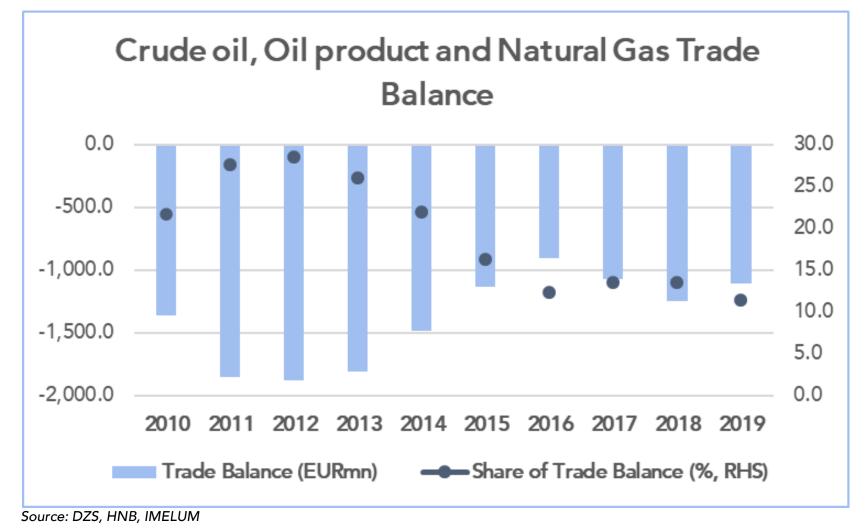
Not easy to move away from fossil fuels – the example of Germany



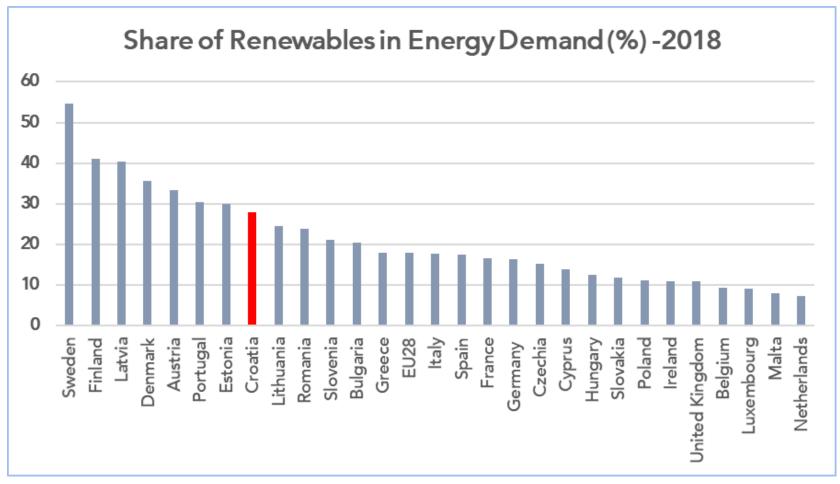
A QUICK LOOK AT ENERGY SECTOR TRENDS IN CROATIA



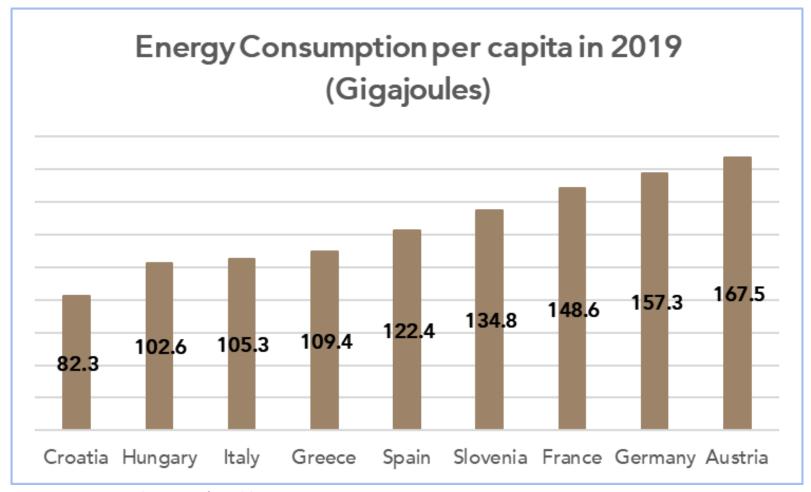
Crude oil, oil product and natural gas demand



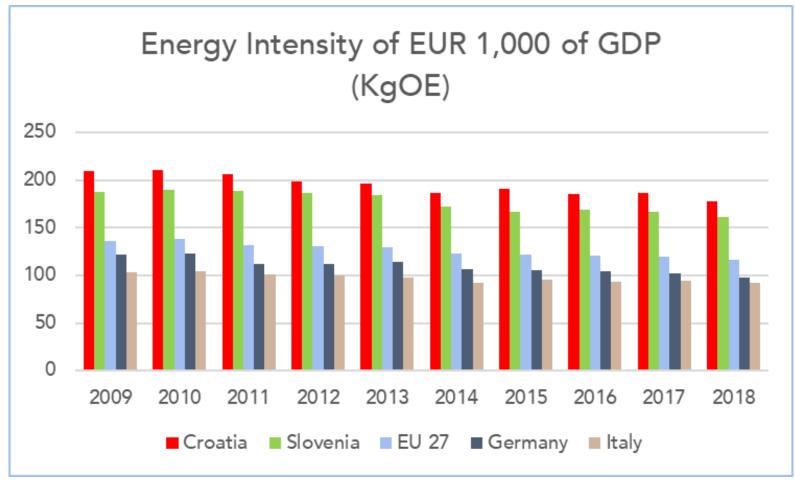
Structure of imports of energy



Energy imports and share of trade deficit


Croatia and renewables – access to hydropower

Source: Eurostat


Croatia consumes relatively little energy per capita...

Source: BP Statistical Review of World Energy, 2020

...and does so relatively inefficiently

Source: Eurostat

Issues to consider

- Energy transitions take time and the process of reducing fossil fuels in the energy mix is no different because:
 - fossil fuels are **reliable** and very **efficient**, **stable** sources of power;
 - trillions of dollars have been invested in energy infrastructure since the 20th century to supply oil, natural gas and similar sources of energy
 - consider the cost of: geological surveys, oil rigs, refineries, pipelines, storage facilities, fuel depots, retail sales networks, specialised equipment etc.
- Croatia is not overly endowed with energy sources
 - Natural gas reserves are dwindling, after 130 years of oil extraction, easily recoverable resources are low
- There is value in exploring and supporting the use of new technologies because they:
 - unlock resources in a financially viable manner
 - enable (increase the likelihood) of positive spillover effects of economic development keep the country in the technological loop as new energy technologies are developed
 - Support the activity in less developed regions of Croatia

Disclaimer

Prepared by: Goran Šaravanja

Contact: goran.saravanja@imelum.com

The information and material contained in this Presentation, including text and graphics, is verified to the best of the author's ability. It is intended for general guidance and information purposes and therefore, Imelum d.o.o. does not accept responsibility for any loss from reliance on it.

Croatia: Energy Opportunities October 30th, 2020

GEORGE KOVACIC

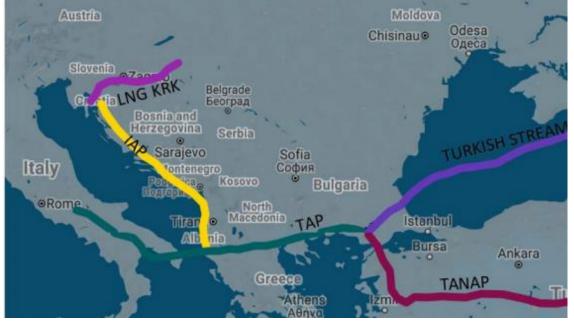
info@croscorp.com

DISCLAIMER

All parties viewing this presentation understand that Croscorp International Ltd. (Croscorp) is not providing any service to any of the parties with this presentation. Information and examples have been presented in a simplified manner. The environment is fast changing and dynamic and the information may no longer be accurate.

Croscorp assumes no responsibility or liability whatsoever for any action taken by any party. For avoidance of any doubt, all parties shall be solely responsible for all decisions undertaken. Parties are encouraged to conduct their own due diligence prior to undertaking any decisions or contact Croscorp for a consultation.

Croatia – Energy Potential


- Solar
- Wind
- Hydro
- Geothermal
- LNG and corresponding transportation

- Onshore and offshore exploration and production of oil and gas
- Carbon capture and storage, flooding and EOR
- Hydrogen in situ from decommissioned and/or marginal fields

Croatia – Energy Opportunities

- Multi-tiered Europe
- Domestic and regional infrastructure under development
- Natural resources have not been developed

Map from: Status of Projects for Diversification of Natural Gas Supply in BiH dated July 2, 2019

Objective - address energy poverty and climate concerns

 Develop natural resources and energy infrastructure

- Lower cost energy & increase competition
- Decreased import dependency
- Energy security
- Revenue and jobs
- Decrease dependence on wood and coal
- Stimulate carbon capture and storage

Nord Stream 2 – German competitive advantage

Nord Stream 2 Details: under construction

- Annual capacity of 55 billion m³ (1.9 tcf)
 - Capacity 22 times Krk LNG

Photo from: Bloomberg article, "Nord Stream 2 Urgency Diminishes" - October 13, 2020

Why Germany wants Nord Stream 2:

- Reliable, efficient and stable supply of energy
- Lower cost subsidy to industry and residents
- First inline Energy Security
- Help Germany move away from nuclear and coal – decarbonization by moving to gas.

Offshore oil production – German competitive advantage

Mittelplate details: producing oil

- Produce oil offshore in a National Park
- Seven km from the shore, in shallow water
- Produced 146 million barrels of oil

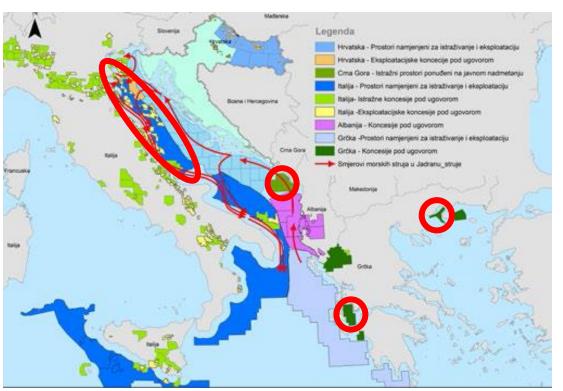


Photo from: Wikipedia Mittelplate post

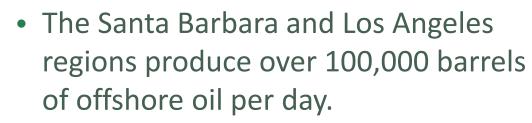
Why Germany produces their national resources:

- Reliable, efficient and stable supply of energy
- Lower cost subsidy to industry and residents
- High paying technical jobs
- Tax Revenue
- Strong domestic oil and gas industry
- Oil and gas service industry plus export of their products and services
- Stimulation of other industries hot houses, fertilizer, petrochemical and others

Neighbors pursuing their best interests

- Italy offshore production of oil and gas
- Montenegro upcoming offshore exploration
- Greece offshore production of oil and ongoing exploration

Greek example – Kavala Bay



- Oil production in the Aegean Sea
- Co-existence of oil production, tourism and fishing
- Oil production stimulates tourism and fishing

US example - Santa Barbara, Long Beach

Island Grissom, THUMS
Islands, one of the four oil
production islands
off Long Beach, California

 Tourism, fishing and offshore oil production successfully co-exist and stimulate each other

10

How should Croatia move forward?

- Hydro
- Geothermal
 - Minimal carbon emissions
- LNG and corresponding transportation
- Onshore and Offshore exploration and production of oil and gas
 - Vermilion gas plant in Vukovar county - 2022

- Carbon capture and storage/carbon flooding
 - Reduce carbon footprint
 - Carbon neutral or negative
- Other EOR
- Hydrogen in situ from decommissioned and/or marginal fields
 - Zero carbon emissions

Geothermal Example & Opportunities

Velika Ciglena – 10 MW installed capacity

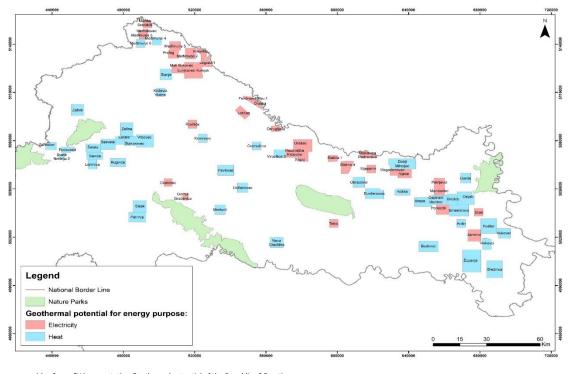
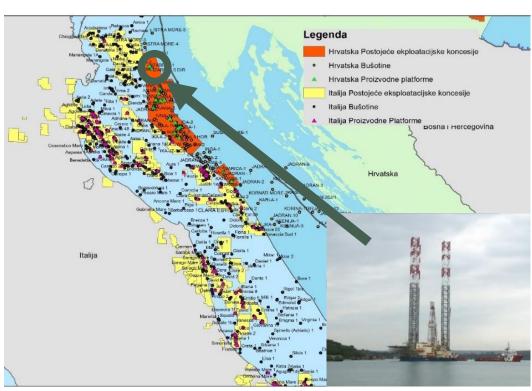

- Produces 24/7/365
- Does not require backup capacity
- More expensive than fossil fuels

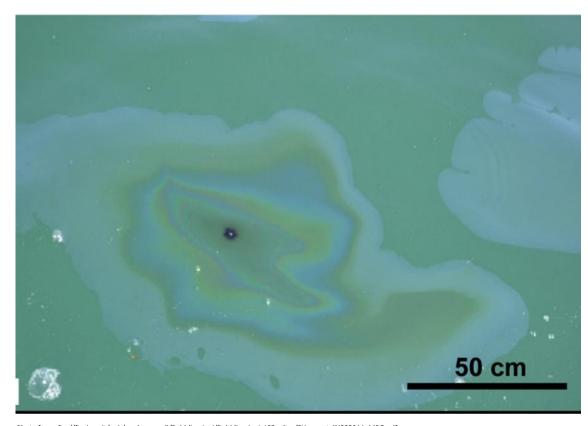
Photo from: CHA presentation Geothermal potential of the Republic of Croatia



Geothermal Potential – Estimated 800 MW

 $\label{thm:map:chapter} \mbox{Map from: CHA presentation Geothermal potential of the Republic of Croatia}$

Offshore Examples & Opportunities


- Croatia has been producing
 Adriatic natural gas since 1999
 Drilling Irena-2
- Italy has produced Adriatic oil and gas for decades
- Existing hydrostatic pressures prevent spills

Screenshot from: https://m.youtube.com/watch?feature=youtu.be&v=IPbXf4KiAvU

Core natural oil and gas seeps – environmental protection

 $Photo from: ftp://ftp.ingv.it/pub/paola.vannoli/Pubblicazioni/Pubblicazioni_JCR_altre/Etiope_etal%202014_MPG.pd$

- Natural oil and gas seeps occur throughout the Adriatic
- Result is surface oil slicks and gas bubble plumes
- Natural oil seeps have been identified by radar reflectance and optical satellites in the Croatian Adriatic

- According to a European Commission study, illegal oil dumps regularly occur in the Adriatic
- Tankers that import oil present the greatest risk to offshore Croatia

Map from: hrcak.srce.hr/file/22403

Excellent offshore potential plus CCS potential

- 203 offshore leads identified
- Interest exists to explore and produce

Lead Type	Number of leads	Indicative lead values Oil (mmbo)				Indicative lead values Gas (bcf)				Relative	Potential Play Type Reserves – Oil (mmbo)				Potential Play Type Reserves - Gas (bcf)			
										Size								
		P90	P50	Mean	P10	P90	P50	Mean	P10		P90	P50	Mean	P10	P90	P50	Mean	P10
Cretaceous Fan	1	8	66	190	524					Only	8	66	190	524	0	0	0	0
Cretaceous Kastified Lmst	1	8	43	86	223					Only	8	43	86	223	0	0	0	0
Cretaceous Platform Margin	9	12	44	68	159	109	494	891	2240	Largest	36	132	204	477	327	1482	2673	6720
(Cretaceous cored) Tertiary Anticline	8	11	40	60	138					Average	11	40	60	138	0	0	0	0
Eocene Debris Flow	1	5	24	43	107	18	87	167	426	Only	5	24	43	107	18	87	167	426
Eocene - Miocene Anomaly	1	68	382	814	2156					Only	68	382	814	2156	0	0	0	0
Eocene Reef	1	5	30	72	193					Only	5	30	72	193	0	0	0	0
Jurassic Fault Blocks	19					148	774	1563	4056	Average	0	0	0	0	148	774	1563	4056
Jurassic Platform Margin	1					109	494	891	2240	only	0	0	0	0	109	494	891	2240
Mesozoic Anticline	35	58	319	673	1764					Largest	464	2552	5384	14112	0	0	0	0
Messinian Channel	12					8	51	126	337	Average	0	0	0	0	80	510	1260	3370
Oligo - Miocene slump	1	2	12	24	63	5	30	70	186	Only	2	12	24	63	5	30	70	186
Oligo - Miocene Anomaly	5					10	87	287	783	Largest	0	0	0	0	25	217.5	717.5	1958
Permo Triassic	20				t i	5	28	61	159	Average	0	0	0	0	100	560	1220	3180
Plio Quaternary Anomaly	90					70	604	1924	5246	Largest	0	0	0	0	210	1812	5772	15738

Chart from: http://www.spectrumgeo.com

Indicative potential lead recoverable (un-risked) resource estimates and total potential by play type

To facilitate opportunities and potential:

George Kovacic
+1 604 420 2262
info@croscorp.com
linkedin.com/in/georgekovacic

THANK YOU

